Hausdorff measure on o-minimal structures

نویسندگان

  • Antongiulio Fornasiero
  • E. Vasquez Rifo
چکیده

In [Berarducci-Otero, 2004], the authors define an analogue of Lebesgue measure for bounded definable subsets of an o-minimal structure K , which expands a real closed field. Our aim is defining the area of a bounded definable d-dimensional subsets of Kn. Different possible definitions for such area are possible: we will prove that some of them are equivalent. On the reals, there are many different definitions of the d-area of a subset. However, on smooth sub-manifolds of Rn all these definitions coincide with the d-dimensional Hausdorff measure Hd . Every definable set in an o-minimal structure on the reals is a finite union of smooth sub-manifolds, therefore the d-area of such a set is Hd . Many formulae are known for the Hausdorff measure: from Fubini’s theorem to the area and coarea formulae. We will generalise some of these formulae to our measure on K . Elisa Vasquez Rifo obtained independently some of the results exposed here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fr{'e}chet and Hausdorff Queries on $x$-Monotone Trajectories

vspace{0.2cm}In this paper, we design a data structure for the following problem. Let $pi$ be an $x$-monotone trajectory with $n$ vertices in the plane and $epsilon >0$. We show how to preprocess $pi$ and $epsilon$ into a data structure such that for any horizontal query segment $Q$ in the plane, one can quickly determine the minimal continuous fraction of $pi$ whose Fr{'e}chet and Hausdo...

متن کامل

Quasi-uniformity of minimal weighted energy points on compact metric spaces

For a closed subset K of a compact metric space A possessing an α-regular measure μ with μ(K) > 0, we prove that whenever s > α, any sequence of weighted minimal Riesz s-energy configurations ωN = {x i,N} N i=1 on K (for ‘nice’ weights) is quasi-uniform in the sense that the ratios of its mesh norm to separation distance remain bounded as N grows large. Furthermore, if K is an α-rectifiable com...

متن کامل

Concerning the frame of minimal prime ideals of pointfree function rings

Let $L$ be a completely regular frame and $mathcal{R}L$ be the ring of continuous real-valued functions on $L$. We study the frame $mathfrak{O}(Min(mathcal{R}L))$ of minimal prime ideals of $mathcal{R}L$ in relation to $beta L$. For $Iinbeta L$, denote by $textit{textbf{O}}^I$ the ideal ${alphainmathcal{R}Lmidcozalphain I}$ of $mathcal{R}L$. We show that sending $I$ to the set of minimal prime ...

متن کامل

MINIMAL RIESZ ENERGY POINT CONFIGURATIONS FOR RECTIFIABLE d-DIMENSIONAL MANIFOLDS

We investigate the energy of arrangements of N points on a rectifiable d-dimensional manifold A ⊂ Rd′ that interact through the power law (Riesz) potential V = 1/r, where s > 0 and r is Euclidean distance in R ′ . With Es(A, N) denoting the minimal energy for such N -point configurations, we determine the asymptotic behavior (as N → ∞) of Es(A, N) for each fixed s ≥ d. Moreover, if A has positi...

متن کامل

A Geometric Proof of the Definability of Hausdorff Limits

We give a geometric proof of the following well-established theorem for o-minimal expansions of the real field: the Hausdorff limits of a compact, definable family of sets are definable. While previous proofs of this fact relied on the model-theoretic compactness theorem, our proof explicitely describes the family of all Hausdorff limits in terms of the original family.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2012